http://www.physorg.com/news/2012-02-power-felt-body-electricity.html
By Lisa Zyga, February 28, 2012
(PhysOrg.com) -- 在彈性熱電材料(flexible thermoelectric materials)的眾多應用中,有一項是利用人體與周遭環境之溫差來提供電力的手錶。但如果你想讓這只錶以低成本的奈米碳管(CNT)/聚合物材料製成,那你目前需要一塊面積約為 500 平方公分的織物,那比一只典型手錶的面積大了約 50 倍。
為了要使這樣的應用更實用,一個研究團隊已開發出一種新的多層 CNT/聚合物設計,並證明其與先前設計相較,電力輸出大幅增加。這種新的 CNT/聚合物,研究者稱之為「電力毯/Power Felt」,也有比其他熱電材料更便宜的潛力。
這個研究團隊,那包括來自 Wake Forest 大學的博士生 Corey Hewitt 與 David Carroll 教授以及來自其他單位的合作者,已將一篇關於此新熱電織物設計的論文發表在最近一期的 Nano Letters 上。
雖然熱電已被研究並商業化運用達幾十年了,但它們傳統上是以無機材料製成,例如碲化鉍(Bi2Te3)。但最近研究者已證明,有機材料有望成為替代品,且具有低成本、易製造與彈性(可撓性)的優勢。然而,到目前為止,有機材料在效能上仍落後無機的。
設計高效能熱電織物的關鍵之一是在材料相反的一面創造大溫差。因 CNT/聚合物非常薄,故垂直於薄膜表面的溫差受到限制。
為了對付此問題,研究者設計出多層 CNT/聚合物薄膜,那允許溫度梯度的排列平行於薄膜的表面。薄膜由數百層導電材料層(包含 CNTs 的聚合物)與絕緣材料層(純聚合物)交錯結合而成。每層的厚度只有 25-40 μm。當織物受到平行於表面的溫差時,電子或電洞會由於 Seebeck 效應從熱端往冷端跑,那將溫差轉換成電壓。
如研究者的解釋,所產生的電壓總量(以及總電力輸出)等於來自每一層貢獻的總和。故往織物上增加熱電層等於以串聯方式增加電壓來源,而熱電層的層數限制只受限於熱源在各層產生足夠溫度變化的能力。在此,熱源的溫度被限制在 390 K(攝氏 117 度),在此溫度下聚合物開始變形。
針對 72 層織物的實驗證明,在 50 K 的溫差下有 137 nW 的最大電力產生。但研究者預測電力輸出能夠增加;例如,他們算出 300 層織物的電力輸出可達 5 μW。
從另一觀點來看,前面提及的手錶,所需要的織物將比目前所要求的 500 平方公分少很多。
"目前,我們織物的面積需求約為 10 平方公分," Carroll 表示。"然而,此論文的論點是證明織物的熱電層增加有些線性。這表示,當更多熱電層被織入織物時(這些會是非常薄的熱電層),就能把更多電力封裝到一個更小的區域內。所以我們呈現的織物僅證明這個事實但沒有將之最佳化。所以,在證明時我們用了 10 平方公分,但我們也做出只要幾平方公分就能提供電力給手錶的織物。而且我們能有更多進展。"
就成本而論,如果 CNT/聚合物熱電裝置大量製造的話,其所產生的電力,由於低材料成本以及易於製造,每瓦可以只花一美元。相較之下,Bi2Te3 熱電裝置目前所產生的電力,每瓦要七美元。一如 Carroll 的解釋,這些材料的真實測試將需要代價。
"我們所做不同之處在於,以某種規格(form factor)製造了某樣東西,那允許此材料能有大面積的應用," 他說。"因此,能產生大量電力,只要成本低的話,那麼 美元/W 足以與其他形態的能源捕捉相比。"當然,若沒有這篇論文中的二大創新,這將成為不可能。首先,如同我已經指出的,是此織物如摺紙般的摺疊,那允許夾層一起增加它們的電力。其次涉及「成本」那方面的事。注意,我們並沒有使用純奈米碳管毯(mats)。相反的,我們的毯主要是添加了奈米碳管的商業化聚合物。因此,昂貴元素的成本得以維持在最低狀態而不會影響整體效能。
研究者們預測,低成本有機熱電織物能有多種應用。除了手錶之外,另一種可穿戴的應用會是有熱電裝置在內襯中的冬季夾克,那利用體熱與戶外溫度之間的溫差來供電給電子裝置,例如 iPod。
其他的潛在應用包括重新捕捉一輛車的廢熱能以便改善燃料里程數,以及在車輛座位內襯此織物以便供電給車上的電池。如果裝在屋瓦下,此織物能在炎熱的日子產生電力幫助減少建物的電費。在緊急時,此織物有可能被用來供電給手機或手電筒。
"這裡有各式各樣的應用,這些材料(的電流輸出)都能完美滿足," Carroll 說。"此外,如果需要更多電力,這裡有製造更大片織物的選項。因為成本優勢,這仍將比選用 Bi2Te3 更加便宜。想像一下,例如,只要比目前所用材料還要再高一點點的成本,就能在汽車車身中佈滿這種材料,同時支持聲音阻尼(sound dampening,他們必定已這樣做)並增加電力收集(power scavenging)的功能。如同所有的有機電子裝置,此創新的真正轉換能力在於其經濟 vs. 技術領先。"
在未來,研究者計畫使用 CNTs 的化學處理與增加聚合物導電性這樣的方法更進一步改良每個薄膜的電力輸出。
"我們將改善效能?是的!" Carroll 說。"我們在改良整體電力輸出上已有顯著進展,且這裡有更多需要克服。對於學物理的讀者來說,透過散射過程抑制聲子模態(phonon modes)的基本原理、與相同調傳輸段落(sections of phase coherent transport)製成的碎形網路耦合,仍很年輕,而且我們確信我們尚未了解真正的潛力。"
※ 相關報導:
* Multilayered Carbon Nanotube/Polymer Composite Based Thermoelectric Fabrics
http://pubs.acs.org/doi/abs/10.1021/nl203806q
Corey A. Hewitt, Alan B. Kaiser, Siegmar Roth, Matt Craps,
Richard Czerw, and David L. Carroll
Nano Lett., Article ASAP
doi: 10.1021/nl203806q
* Dynamical properties of fractal networks: Scaling, numerical simulations, and physical realizations
http://link.aps.org/doi/10.1103/RevModPhys.66.381
Tsuneyoshi Nakayama, Kousuke Yakubo, Raymond L. Orbach* MIT 研究者發現製造電力的新方法
Rev. Mod. Phys. 66, 381–443 (1994)
doi: 10.1103/RevModPhys.66.381
* 微小的矽奈米線發電機收成電路所產生的熱
* 在奈米尺度下打破普朗克定律
* 以「國王的新衣」重新思考布朗運動
* 以有序風格推進冷卻的邊疆
* 科學家發現革新材料的方程式
* 馴伏野蠻的聲子
* 研究者:聲波或能冷卻微電子裝置
* 磁振子學:奈米級自旋波能取代微波
沒有留言:
張貼留言